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Analytical and numerical analysis of electromagnetic wave propagation in circular waveguides filled with anisotropic 
chiroplasma media is presented. Emphasis is given to the characteristics of flux density patterns in the waveguide. In the 
structure of the waveguide, the inner region is assumed to be bounded by Debye boundaries. The characteristics equation 
for the modes in this waveguide is obtained. The behavior of the dispersion curves and the energy flux are examined 
numerically. The negative energy flux propagation through the chiroplasma material is confirmed, which clues to exploring 
the occurrence of negative refraction in chiroplasma medium. 
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1. Introduction 
 

The knowledge of wave propagation is important in 

the present dome of advanced technologies in 

metamaterial waveguides. The materials waveguides with 

negative index metamaterials have been investigated by 

many researchers in microwave to terahertz regime and 

optical-wave engineering. It is observed that chiral 

metamaterials are of countless research interest[1, 2].  The 

chiral media have special characteristics for 

electromagnetic wave interaction which does not found in 

natural occurring materials. This media can be used to 

artificially design device with negative or positive of 

permittivity and permeability. Several authors carried out 

researches relevant to isotropic chiral media [3-5]. 

In order to attain control on chirality in structures like 

waveguides, certain forms of anisotropy may be produced. 

It is observed from literatures[6, 7] that uniaxial 

anisotropic chiral media can yield the phenomenon of 

backward refraction and easily to be realized. Studies 

relevant to uniaxial anisotropic chiral metamaterials 

waveguides have been performed by many researchers [8-

10]. Another possibility of fabrication of anisotropic chiral 

media is by embedding chiral objects in magnetically 

biased plasma. This chiral embedded magnetically biased 

plasma materials [11]are referred to as chiroplasma[12, 

13].The modal eigenvalue properties in the chiral-plasma 

medium are, essentially, doubly anisotropic.   

This paper deals with a circular waveguide of 

chiroplasma bounded by DB-boundaries. It was noted in 

[14]that a parallel-plane waveguide with DB-boundary 

conditions supports modes that consist of plane waves 

reflected from both parallel plates. Splitting the modes in 

TE and TM modes with respect to the normal to both 

planes, the TE modes turn out to be corresponding to two 

PEC planes while the TM modes correspond to two PMC 

planes [15]. The same property has been shown to be valid 

for the circular waveguide and the spherical resonator with 

DB-boundaries for TE and TM modes. This is noticed for 

flux through guides with microstructure twisted clad DB 

medium and for waves in coaxial optical fiber under DB-

boundaries with respect to the radial direction [16-19]. 

This property was also seen valid in the propagation 

through uniaxial anisotropic chiral circular waveguide 

under DB boundaries. Having chirality in the medium, the 

transformation to circularly or elliptically polarized field 

from either TE or T M field was attained, which is not the 

case for an anisotropic filling material. 

In this work, we present analysis and computations of 

the propagation of electromagnetic fields and energy flux 

density in the chiroplasma-filled cylindrical waveguide 

employing the DB boundary conditions. The dispersion 

relations for the guide are derived and used to obtain the 

propagating modes and their energy flux. Results reveal 

that the chirality, plasma frequency, and cyclotron 

frequency of plasma have factual effects on the power 

values of the propagating modes. The time-harmonic 

 ( )j t  dependence is adopted and suppressed in what 

follows. 

 
 
2. Formulations 
 

Consider a circular waveguide of radius b having an 

infinite extent along the z-direction which is the optical 

axis of the circular waveguide. The circular waveguide is 

filled with a chiroplasma material with its outer surface is 

defined by the DB boundary. Unit vectors for the 

cylindrical coordinate system are denoted by  ˆ ,   ˆ  , and  

ẑ . The constitutive relations for the chiroplasma medium 

in the core region are given as  
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where  is the chirality parameter that causes of 

electromagnetic coupling in the chiroplasma material,  is 

the permeability, and  is the permittivity tensor that can 

be described as 
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The elements of this tensor are the function of the 

plasma parameters and their explicit expressions are given 

as 
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where the 
p  is the plasma oscillation frequency,  is 

the cyclotron frequency and  is the incident wave 

frequency. In the above,
2

0

 p

ne

m



 and 0 

,c

e B

m
   n is 

plasma density (electron density), m is the electron mass, e 

is the magnitude of the electron charge, and  is the 

magnetic field strength.   From Maxwell’s equations, the 

wave equation for the longitudinal electromagnetic field 

component  in the anisotropic chiroplasma medium can 

be obtained as  
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The total electric and magnetic fields in the 

chiroplasma medium can be expressed in the form  
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 j      H H H                            (7)  

Moreover, the EM field can be split into longitudinal and 

transverse components as  
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The two wave numbers in the chiroplasma medium are 

defined as 
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Solutions of longitudinal field components in core can be 

written as    
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where  2

1 2 ,/c k c  
mA and

mB  are unknown 

coefficients. The transverse field components in the guide 

core can be derived to be 
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3. The dispersion equation 
 

The boundary of the guide medium is defined as a DB 

media. The characteristic equation is obtained by using the 

boundary conditions at the boundaries of the chiroplasma 

and the DB defined medium. According to the nature of 

the DB boundary conditions, the normal components of 

electric and magnetic fields vanishes at the surface of the 

guide. Using the notations of this paper, they can be 

written as below [11-17] 
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By using the boundary conditions defined in equations 

(17) and (18), two equations are found, and the 

determinant made by the coefficients of these equations 

must be equal to zero to get a non-trivial solution, which 

yields  
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The determinant of the above matrix is set to be equal to 

zero to have non-trivial solutions 
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This leads to the following characteristic equation 
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The above expression (21) leads to the characteristics 

curve that determines the propagation constants and the 

cutoff frequencies of the propagating modes.  The energy 

flow can be obtained using the following relation with 

equations (12)-(16)                          
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4. Results and discussions 
 

In this section, the dispersion curves and the energy 

flux in the cylindrical waveguide filled with an anisotropic 

plasma chiral medium under DB boundary conditions. It is 

assumed that
0  t z    , throughout the presented 

computations. The longitudinal propagation constant 

can be obtained numerically from the characteristics 

equation (20) and the relationship of the constants

     , ,m m mA B C , and
mD . To check the accuracy of the 

presented formulations, the result of a limited case of 

   0p   and 0   is compared with results published in 

[19]. The results of this paper formulation are found to 

approach the results in [19] very accurately.  

 

 

 
 

Fig.1. Characteristics curves for different values of  

cyclotron frequency for (a) mode 
01H and (b) mode 

11H . 

 

 

Fig. (1a) and (1b) illustrate the behavior of f ( )  

against b  from equation (21) for the  guided mode 

and the  guided mode for different values of the 

cyclotron frequencies at b=5000 micron, 
116.32 10 ,p Hz    

116.32 10p Hz   and  2.0   with 

117.0 10c Hz   (dotted line), 114.4 10c Hz   (dashed 

line) and 111.7 10c Hz    (solid line). The effect of the 

cyclotron frequency on the characteristics curves is 

depicted in figure (1a) and figure (1b).  It is observed from 

the obtained numerical results that when the cyclotron 

frequency is low the cut off is high and vice versa. It is 

also noted that curves are inverted in the case of the lowest 

mode, which indicates the existence of backward 

propagating waves. Figures 2a and 2b are the numerical 

results of equation (21), they demonstrate the behavior of 

f ( )  for b  corresponding to the modes 
11H   and 

21H    
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respectively, at  2.0,  141 10 ,p Hz    and 

143.12 10c Hz    at operating wavelength of 1.55 

micron.  As can be seen from these two Figures, the cut-

off frequency of the 
11H  mode is located at values higher 

than that of the 
21H . When the guide core radius is 

smaller; the cut-off frequency is getting higher and vice 

versa. 

 

 

 

 
 

Fig.2. Characteristics curves for different cylinders’  

radius (a) mode 
11H and (b) mode 

21H . 

 

 

Figs. 3(a) and 3(b) show the variation of the 

normalized energy flux density with respect to for the 
01H  

mode for different values of the cylinder’s radius and 

different values of the chirality. Figure 3(a) depicts the 

normalized energy flux density at 
141 10 ,p Hz     

143.12 10c Hz    and 2.0,  with b=10 micron (solid 

line), b=50 micron (dashed line), and b=100 micron 

(dotted line). Figure 3(b) depicts the normalized energy 

flux density at b=10 micron with 2.0,  1.0   and 

0.5   for solid line, dashed lines and dotted lines 

respectively. In this guided mode, the energy flux density 

is always oriented in the forward direction and it is higher 

in larger chiroplasma cylinders as expected. However, 

lower chirality values drive higher energy flux density in 

the waveguide.          

 

 

 
 

 
 

Fig.3. The energy flux density in the 
01H  mode (a) for different 

values of cylinders’ radius (b) for different values of chirality. 

 

 

Figs. 4(a) and 4(b) show the variation of the 

normalized energy flux density with respect to / b  for 

the 
11H mode for different values of the cylinder’s radius 

and different chirality parameter’s values. Figure 4(a) 

shows variation of the normalized energy flux density at 
2.0,  with b=10 micron (solid line), b=50 micron 

(dashed line), and b=100 micron (dotted line). Figure 4(b) 

shows variation of the normalized energy flux density at
141 10 ,p Hz     143.12 10c Hz   , and b=10 micron 

with 2.0,  1.0   and 0.5   for solid line, dashed 

lines and dotted lines respectively. In this guide mode, it is 

observed that for smaller chiroplasma filled region, the 

energy flux density increases in the negative direction. In 

this guide mode, lower chirality values have more energy 

flux density oriented in the negative direction. The 

negative flux propagation can be understood as backward 

wave phenomenon, which is the further evident in 

chiroplasma guides with lower chirality. 
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Fig.4. The energy flux density in the 

11H mode (a) for different 

values of cylinders’ radius (b) for different values of chirality. 

 

 

 

Figs. 5(a) and 5(b) show the variation of the 

normalized energy flux density with respect to  for the 

 mode for different values of the cylinder’s radius and 

different chirality parameter’s values. Figure 5(a) shows 

variation of the normalized energy flux density at 
141 10 ,p Hz    and 143.12 10c Hz     2.0, 

with b=10 micron (solid line), b=50 micron (dashed line), 

and b=100 micron (dotted line). Figure 5(b) shows the 

variation of the normalized energy flux density at b=10 

micron with 2.0,  1.0   and 0.5   for solid line, 

dashed lines and dotted lines respectively.  In this guided 

mode, it is observed that the small chiroplasma filled 

region is embossed by negative values of the energy flux 

density and when the chiroplasma region is extended, the 

energy flux tends to increase to positive values. Similarly 

lower chirality values instigate negative energy flux 

densities and higher chirality values instigate positive 

energy flux densities.   

 

 

 

 

 

The effect of the plasma frequency on the propagation 

of electromagnetic waves in plasma chirowaveguide is 

investigated in Figures 6(a) and 6(b). These figures 

illustrate the variation the energy flux densities with 

respect to / b  for the 
01H and 

11H modes at 
143.12 10 ,c Hz    2.0  Figure 6(a) shows variation 

the energy flux densities with respect to / b   for different 

values of plasma frequency in the guide for the 
01H  

mode. It is shown that if the plasma frequency is increased 

then the magnitude of the energy flux density increased 

and all of the energy in the guide is positive.  Figure 6(b) 

shows variation the energy flux densities with respect to 

/ b for different values of plasma frequency for the 
11H  

mode. To the contrary of the 
01H  mode, it is shown that 

for the 
11H  mode, the increase in the plasma frequency 

yields, mostly, an increase of the energy flux density in the 

negative orientation. This is a noteworthy phenomenon. 

 

 

 
    

 
Fig.5. The energy flux density in the 

21H  mode for (a) different 

values of cylinders’radius (b) different values of chirality. 
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Fig.6.The energy flux density for different values of plasma 

frequency (a) mode 
01H  and (b) mode 

11H . 

 

5. Conclusions 
 

The wave propagation in a circular anisotropic 

chiroplasma waveguide with the outer surface coated with 

a DB boundary has been studied and analyzed in this 

paper. The dispersion diagram, cut-off frequencies and the 

propagating modes in the chiroplasma-filled circular 

waveguide have been numerically examined. The effect of 

the chirality parameter of the guide medium, the guide 

dimensions, and the plasma frequency on the propagation 

of the energy flux density is studied thoroughly. It is noted 

that maximum of the flux density concentrated in the core 

of the waveguide. Furthermore, it has been found that both 

forward and backward waves are supported by the 

waveguide material structure. The negatively oriented 

energy flux is exited in higher modes in the circular 

chiroplasma waveguide and its intensity is controlled by 

the guide size, the chirality parameter, and the plasma 

frequency of the guide material. At certain values of 

plasma frequency, the energy flux may invert its 

orientation from negative to positive values. These 

characteristics might give this waveguide a great potential 

for advanced applications as in the development of novel 

EM tools.  
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